

Toray Group

CIT

Composite Materials (Italy) srl - CIT a Toray Group Company manufactures woven carbon, special fabrics, multiaxial, prepregs and UD tapes.

We also formulate and apply our own resins, epoxy and phenolic, as well as other formulations depending on the designated use and areas of application: industrial, aerospace, automotive, sport and leisure, medical, building and marine.

CIT works in partnership with customers on projects aimed at obtaining one of a kind pieces with the highest technical-performance level, in particular for competition vehicles and industrial applications. We serve industries requiring composites because of their characteristics of lightness, versatility and precision. CIT approach to composites is both specific and global, translating the customer specific requirements into a product offer that satisfies the specific need, in the most efficient and effective way. This is made possible thanks to our ability to manage the entire process. We have testing laboratories, weaving and impregnating equipment, and a staff of specialized engineers who understand the specific applications and customer requests and design the most suitable solution, all in-house.

HIGH PERFORMANCE HIGH TECHNICAL SUPPORT FULL SCALE OF DATA FAST MATERIAL DELIVERY CUSTOM SOLUTIONS

DRY FABRICS

CIT internally produces a wide range of fabrics in carbon fiber, aramid fiber, as well as multiaxial fabrics, hybrid fabrics, unidirectional hybrid fabrics and tapes for over 25 years.

PREPREGS & UD

CIT is a manufacturer of prepregs and UD tapes. Prepregs are fiber reinforced materials which are impregnated with various resin systems and supplied in fabric or unidirectional form. We formulate our own resins, which can be epoxy, phenolic or cyanate ester matrix. The whole range of our fabrics, carbon, aramid, special and hybrid, can be impregnated. Applications include automotive, aerospace, transportation, sports & leisure, medical and marine industries.

O3 APPLICATIONS YOUR IDEAS FACILITY

AEROSPACE

Emerging markets and the replacement of aging aircraft fleets are driving the growing demand for lighter, stronger and more advanced materials and chemical technologies for aerospace applications. New technologies are making it possible to surpass previous performance limitations, expand design options and lower part costs. Toray is a leading company for commercial aero applications all over the world.

INDUSTRY

All industries depend heavily on optimizing manufacturing processes, using advanced composite material to get benefit from them. CIT experience can support every player in the market looking to improve production output speed while decreasing the energy consumption. The supply chain in support of industrial production, from raw material to manufacturing, is currently determining how to further engage and leverage advanced materials and chemical technologies to accelerate improved results and sustainability.

AUTOMOTIVE

High volume manufacturing methods and weight reduction are two important considerations for the automotive industry. One production run may require manufacture of hundreds of thousands of parts per year, and the rapid stamping processes associated with fast thermosetting based composite materials lend themselves to these high volume needs. Continuous fiber reinforced materials offer equivalent strength and stiffness with lower weight when compared to injection molded parts and metallic parts. Where Energy saving is required, CIT is here.

RACE

Along with superior technical service and applications engineering support, CIT offers a full spectrum of composite materials for race applications. Where customers are actively seeking a solution to reduce weight and increase vehicles performances, we are ready to co-design and develop the most advanced solution, with our typical fast friendly service and professional support. We are race.

SPORT & LEISURE

Composite materials are used in a variety of other applications, which benefit from the light weight and high stiffness of composites. In the recreational arena, composites are used in golf club shafts, tennis rackets, fishing rods, boat paddles, bats, hockey sticks and a variety of other applications.

04 DRY FABRICS

ARAMID FABRICS										
Arti	Article		threads x cm		lensity		Weave			
Arus			weft	warp	weft	warp	weft	total	weave	
					(dTex)		(gr/mq) ± 4%			
		(UNI EN	1049-2)				(UNI 5114-82)			
STYLE	120	13	13	215	215	30	30	60	plain	
STYLE	220	9,5	9,5	420	420	40	40	80	plain	
STYLE	181	20	20	420	420	84	84	168	8 H satin	
STYLE	281	6,7	6,7	1270	1270	86.5	86.5	173	plain	
STYLE	285	6,7	6,7	1270	1270	86.5	86.5	173	crowsfoot satin	
STYLE	282	6,7	6,7	1270	1270	86,5	86,5	173	twill 2/2	
STYLE	335	6,7	6,7	1580	1580	111	111	223	crowsfoot satin	
STYLE	900	6,7	6,7	2400	2400	163	163	326	5 H satin	
STYLE	1350	9,3	9,3	2400	2400	225	225	450	basket 4/4	
ZZ	300	9,1	9,1	Zylon HM	Zylon HM	150	150	300	twill 2/2	

				FABRICS	CARBON					
		weight		er	fib	sxcm	threads			
Weave	total	weft	warp	weft	warp	weft	warp	ICIE	Article	
		(g/mq) ± 4%		ex)	(te					
		(UNI 5114-82)				1049-2)	(UNI EN			
plain	94	47	47	HS 1K	HS 1K	7,0	7,0	90	CC	
plain	122	61	61	HS 1K	HS 1K	9,0	9,0	120	CC	
plain	160	80	80	HS 3K	HS 3K	4,0	4,0	160	CC	
plain	194	97	97	HS 3K	HS 3K	4,9	4,9	201	CC	
twill 2/	194	97	97	HS 3K	HS 3K	4,9	4,9	205	CC	
plain	204	102	102	HS 3K	HS 3K	5,1	5,1	202	CC	
twill 2/	204	102	102	HS 3K	HS 3K	5,1	5,1	206	CC	
twill 2/	240	120	120	HS 3K	HS 3K	6,0	6,0	245	CC	
5 H sat	280	140	140	HS 6K	HS 6K	3,5	3,5	281	CC	
twill 4/	280	140	140	HS 3K	HS 3K	7,0	7,0	282	CC	
twill 2/	280	144	136	HS 12K	HS 12K	1,8	1,7	283	CC	
twill 2/	280	140	140	HS 3K	HS 3K	7,0	7,0	284	CC	
plain	280	144	136	HS 12K	HS 12K	1,8	1,7	285	CC	
5 H sat	280	140	140	HS 3K	HS 3K	7,0	7,0	289	CC	
twill 2/	300	150	150	HS 6K	HS 6K	3,7	3,7	301	CC	
plain	300	150	150	HS 6K	HS 6K	3,7	3,7	302	CC	
5 H sa	368	184	184	HS 6K	HS 6K	4,6	4,6	370	CC	
twill 2/	380	190	190	HS 12K	HS 12K	2,4	2,4	384	CC	
twill 4/	400	200	200	HS 6K	HS 6K	5,0	5,0	402	CC	
twill 2/	416	212	204	HS 12K	HS 12K	2,6	2,5	420	CC	
twill 4/	450	225	225	HS 6K	HS 6K	5,6	5,6	450	CC	
twill 2/	600	300	300	HS 12K	HS 12K	3,8	3,8	600	CC	
twill 2/	630	315	315	HS 12K	HS 12K	3,9	3,9	631	CC	
twill 2/	672	336	336	HS 12K	HS 12K	4,2	4,2	700	CC	
8 H sat	920	460	460	HS 12K	HS 12K	5,7	5,7	950	CC	
twill 2/	199	99,5	99,5	T800 6K	T800 6K	4,5	4,5	204	CC	
twill 2/	200	100	100	M46J 6K	M46J 6K	4,5	4,5	200	CC	
twill 2/	200	100	100	T1000 6K	T1000 6K	4,0	4,0	200	CC	
5 H sat	280	146	134	M46J 6K	M46J 6K	6,5	6,0	280	CC	
5 H sat	280	138	142	T1000 12K	T1000 12K	6,2	6,3	280	CC	
5 H sat	280	140	140	T1100 12K	T1100 12K	2,9	2,9	280	CC	
twill 2/2	204	102	102	HS 3K	HS 3K	5,1	5,1	206	CF	
plain	240	120	120	HS 12K	HS 12K	1,5	1,5	240	CF	
twill 2/2	280	144	136	HS 12K	HS 12K	1.8	1.7	283	CF	

05 dry fabrics

				HY	BRID FABRICS					
Article		threads	x cm	fik	ber		weight			
		warp	weft	warp	weft	warp	weft	total	Weave	
				(te	ex)		(gr/mq) ± 4%			
		(UNI EN	1049-2)				(UNI 5114-82)			
CK	160	5,0	4,1	3K (C) - 158 (A)	3K (C) - 158 (A)	66 (C) - 26 (A)	26 (C) - 42 (A)	160	plain	
CK	204	6,3	6,3	3K (C) - 127 (A)	3K (C) - 127 (A)	64 (C) - 41 (A)	64 (C) - 41 (A)	208	twill 3/1	
CK	220	7,0	6,3	3K (C)	127 (A)	142	81	223	twill 3/1	
CKK	180	5,0	5,0	3K (C) - 158 (A)	3K (C) - 158 (A)	34 (C) - 54 (A)	34 (C) - 54 (A)	175	plain	
CKK	181	5,0	5,0	3K (C) - 158 (A)	3K (C) - 158 (A)	34 (C) - 54 (A)	34 (C) - 54 (A)	175	twill 2/2	
CKK	240	6,7	6,7	3K (C) - 158 (A)	3K (C) - 158 (A)	45 (C) - 73 (A)	45 (C) - 73 (A)	240	twill 2/2	
EA	390 S	4,5	4,7	600 (E) - 240 (A)	600 (E) - 240 (A)	135 (E) - 54 (A)	141 (E) - 56 (A)	386	twill 3/1	
				UNIDIRECTI	ONAL HYBRID F	ABRICS				
		threads x cm		fik	ber		14/			
Art	icle	warp weft		warp weft		warp weft		total	Weave	
				(te	ex)					
		(UNI EN 1049-2)								
CG	170	7,0	4,3	3K (C)	68 (E)	142	30	172	plain	
CG	205	8,5	4,3	3K (C)	68 (E)	174	30	204	plain	
CG	399	4,2	2,8	12K (C)	200 (E)	344	56	400	plain	
CG	550	5,6	2,5	12K (C)	200 (E)	460	60	520	plain	
CG	600	6,5	2,5	12K (C)	200 (E)	525	51	576	plain	
GK	195	7,3	6,8	240 (A)	34 (E)	175	30	205	plain	
					TAPES					
		threads x cm			fiber			weave		
Art	icle	warp	weft	warp			weight			
					(tex)	(gr/mc	I) ± 4%			
		(UNI EN	(UNI EN 1049-2)			(UNI 5114-82)		(UNI 8099)		
NCU	215	5,0	5,0	6K (C)	34 (E)	22	25	REPS 2/2	REPS 2/2	
NCU	300	3,6	6,2	12K (C)	5,5 (PES	6) 29	94	REPS 2/2	REPS 2/2	
NCU	380	4,6	6,1	12K (C)	5,5 (PES	3) 38	37	REPS 2/2	REPS 2/2	
NCU	501	12,5	10,0	12K (C) - 34 (E) 34 (E)	5	38	REPS 2/2	REPS 2/2	

C: Carbon - A: Aramide - E: E glass - PES: Polyester Standard widths: 50, 75, 100, 120 mm are available in stock. Special widths in the range 30 , 120 mm upon request.

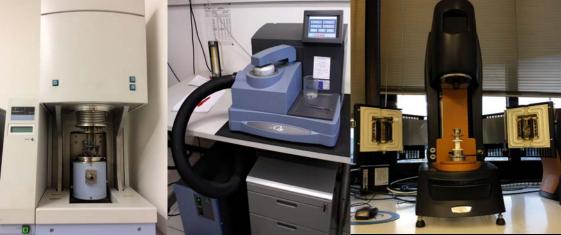
	MULTIAXIAL FABRICS											
Arti	Article		eights in ea	ach axis (g	gr/mq) ± 5	5%	total weight	thickness	Material			
			0° +45° 90°		45% 000	GSM	(gr/mq) ± 5%	(mm) ± 15%				
		0.	+45°	90°	-45°	GSM	(UNI 5114-82)	(UNI EN ISO 5084)				
	± 45° Biaxial											
CBX	300	150			150		300	0,3	CARBON			
CBX	400	200 20			200		400	0,45	CARBON			
CBX	440	220			220		440	0,45	CARBON			
CBX	600	300 300			300		600	0,6	CARBON			
EBX	300	150 150				300	0,3	GLASS				
EBX	400	200 200					400	0,43	GLASS			
EBX	600	300 300					600	0,6	GLASS			

06 resin systems & UD

	RESIN SELECTOR GUIDE										
	RESI	N	CURE CYCLE			STAB	STABILITY		SUPPORT		ADDITIONAL FEATURES
Name	Туре	Maximum Service Temperature	Cure Temperature Range	Typical cure cycle	Post-cure (when needed)	@23°C Days	@-18°C Months	Fabric & Multi- axial	UD (HS, IM, HM, UHM)	Black version available	Notes
ET445	A/S	135°C	80°C-150°C	30' @ 125°C		40	12	\checkmark	\checkmark	\checkmark	Trasparent, very shining (A-Preg* version available)
#2573	S	115°C	130°C	2h @ 130°C		30		\checkmark	\checkmark		High toughness Nanoalloy [™] resin to absorb impact energy
#2574	S	90°C/150°C	130°C	2h @ 130°C		30		\checkmark	\checkmark		High compressive Nanoalloy [™] resin
ER434	S	125°C	85°C-135°C	90'@125°C		30	12	\checkmark	\checkmark	\checkmark	High toughness and impact resistance
ER441	S	160°C	120°C-150°C	2h @ 135°C		21	12	\checkmark	\checkmark	\checkmark	High Tg toughened resin with good compressive properties
ER450	A/S	180°C	80°C-180°C	2h @ 135°C		45		\checkmark	\checkmark	\checkmark	Toughened and with versatile cure temperatures
ER563	HT	238°C	135°C-180°C	2h @ 180°C	2h @ 200°C	21		\checkmark	\checkmark	\checkmark	Very High Tg toughened resin
CE260	HT/F	340°C	80°C-90°C	16h @ 80°C	2h @ 250°C	3	6	\checkmark	\checkmark		Low temperature cure cycle cyanate ester resin
CE662	HT/F	360°C	125°C-180°C	2h @ 135°C	2h @ 180°C	21	12	\checkmark	\checkmark		Cyanate-ester resin (UL94V0+ATS1000+FAR 25.853 compliant)
EF452	S/F	140°C	125°C-150°C	90' @ 125°C		21		\checkmark	\checkmark	\checkmark	Fire resistent Epoxy (ATS1000+FAR 25.853 compliant)
EF455	S/F	150°C	120°C-150°C	2h @ 135°C		21	12	\checkmark		\checkmark	Fire resistent Epoxy (UL94V0 + FAR 25.853 compliant)
FF562	F	150°C	125°C-150°C	75' @ 135°C		30		\checkmark		\checkmark	Fire resistent Phenolic (ATS1000+FAR 25.853 compliant)
ES161	Т	200°C	45°C-55°C	14h @ 45°C	5h @ 200°C	5	6	\checkmark		\checkmark	Tooling prepreg (High thermal stability and excellent surface
ES253	Т	160°C	45°C-65°C	12h @ 50°C	6h @ 180°C	5	U	\checkmark			finishing)

Application: A - Aesthetical | S - Structural | F - Fire Resistant | T - Tooling system | HT - High Temperature *A-Preg is CIT class A solution for automotive body panels and interiors.

Compatible adhesive film range is also available.


NANOALLOYTM technology is an innovative microstructure control technology developed by Toray that can bring about dramatic improvement in characteristics compared to traditional epoxy by minutely dispersing multiple polymers on a nanometric scale.

We developed matrix resin #2573 and #2574 applying NANOALLOY[™] technology which more than two kinds of resins are phase separated. It achieved modulus of elasticity and fracture toughness simultaneously although those characteristics were difficult to coexist so far. Carbon fiber prepregs using these matrixes are already used for F1 side intrusion panels and chassis construction and in demanding MARINE applications. The Italian Toray company CIT, is producing these materials as fabric prepreg and unidirectional tapes."

D7 LABORATORIES

QUICK ANSWERS TO your needs

Process and Mechanical:

- Lab scale autoclave, press and oven cure capabilities
- Mechanical load test frame equipped with tensile, compression, shear and drum peel fixtures
- Experts test coupon preparation and computer data acquisition
- Laminate cross section analysis by microscope

Physical/Chemical:

- DSC, FTIR, TGA, DMA RHEOMETER
- Resin content, gel-time, volatile content
- Tackiness, Impregnation level
- Flammability (vertical burn)

Environmental:

- Temperature and humidity conditioning

